Extending continuous functions in zero-dimensional spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Zero-dimensional Continuous Images of Compact Ordered Spaces

Throughout this paper X denotes a compact and zero-dimensional Hausdorr space. We shall be concerned with Theorem 0.1 The following assertions are equivalent. (A) X is the continuous image of a compact ordered space. (B) X is the continuous image of a zero-dimensional compact ordered space. (C) X has a T 0-separating cross-free family of clopen sets. (D) X has a T 0-separating non-Archimedian f...

متن کامل

Spaces of Continuous Functions

Let X be a completely regular topological space, B(X) the Banach space of real-valued bounded continuous functions on X, with the usual norm ||&|| =supa?£x|&(#)| • A subset GCB(X) is called completely regular (c.r.) over X if given any closed subset KQ.X and point XoÇzX — K, there exists a ô £ G such that &(#o) = |NI a n ( i sup^^is: \b(x)\ <||&||. A topological space X is completely regular in...

متن کامل

Zero Sets for Spaces of Analytic Functions

We show that under mild conditions, a Gaussian analytic function F that a.s. does not belong to a given weighted Bergman space or Bargmann–Fock space has the property that a.s. no non-zero function in that space vanishes where F does. This establishes a conjecture of Shapiro (1979) on Bergman spaces and allows us to resolve a question of Zhu (1993) on Bargmann–Fock spaces. We also give a simila...

متن کامل

Topological entropy on zero-dimensional spaces

Let X be an uncountable compact metrizable space of topological dimension zero. Given any a ∈ [0,∞] there is a homeomorphism on X whose topological entropy is a.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1975

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1975-0383340-x